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Abstract 

A computer animated movie was produced, illusrrating 
both 20 and 30 Hilbert curves, and showing the transi- 
tion from 20 to 30 with the help of volume rendering. 

Introduction 
Hilbcrt curves are continuous curves which pass at least 

once through each point of a square or cube. They can be 
defined as the limit of a sequence of mappings of succcs- 
sivcly smaller dyadic subintervals of the unit interval to 
small subsquares or subcubes. 

These finite approximations are useful for coding imag- 
es or volumes. Area coherence in an image produces high 
correlation in the sequence of data values at pixels, when 
they arc traversed in the order of a Hilbert curve approxi- 
mation, allowing efficient data compression. Similarly, 
tracing out a volume Hilbert curve can take advantage of 
data coherence in all three dimensions. 

This paper describes the production of an animated film 
illustrating 2D and 3D Hilbert curves. The content of the 
film is described in section 1, the mathematical definitions 
and algorithms for the approximations are given in section 
2, and the volume rendering techniques are discussed in 
section 3. 

1. The Film Plot 
The animation starts with a circular tube, which de- 

forms continuously through smooth piecewise-circular ap- 
proximations to the 2D Hilbert curve. The fourth order 
approximation is shown in figure 1. (See color supplement 
at the end of the volume for figures 1 through 8.) The tube 
changes to a square cross section, and by the fifth order ap- 
proximation, shown in figure 2, it is touching itself. The 
circular arcs then square off so that the approximation ap- 
pears to cover the square, and the surfaces become partial- 
ly transparent, to reveal the glowing volume density shown 
in figure 3. 

The curve is yellow, with its parametrization indicated 
by short segments in light green, purple, and dark green, 

repeated in eight cycles. The origin of the parametrization 
is advanced along the curve as the animation progresses, 
so that it looks like a crawling colored snake. This indi- 
cates the path of the curve even when the whole square is 
filled up, Volume rendering extends this color indication 
of the path to three dimensions, and the marble tile back- 
ground helps in perceiving the volume opacity. 

The closed curve. breaks between a purple and dark 
green band and the front part begins filling up the cube as 
a 3D Hilbert curve. By figure 4, the second purple band 
has started into the cube, and by figure 5, the whole curve 
has moved over to the cub% and again becomes closed. 

Figures 3 through 5 show high order approximations, 
using a recursive rendering algorithm described in section 
3 which only subdivides squares or cubes which are not of 
homogeneous color. Between any two frames in the ani- 
mation, many tiny squares or cubes change color, so the 
motion is jerky. Figure 6 shows a switch to the third order 
approximation, where the color boundaries move smooth- 
ly. The surface is incised between cubcs which are not ad- 
jacent on the approximation path, and in figure I, the 
incisions have widened to reveal the squared off tube. This 
is the reverse of the process, not illustrated here, between 
figures 2 and 3. Finally in figure 8 the tube becomes 
rounded, to give the 3D version of figure 1. In the anima- 
tion sequence including figures 5 through 8 the camera is 
slowly rotated about the cmx, so that motion parallax can 
help make the 3D structure more evident. 

2. Defining the Approximations. 
The ‘2D Hilbert curve maps a fin the unit interval 10, 11 

to a pair (I, y) in the unit square [O, l] x [O, 11. An approx- 
imation of order n assigns the first n binary digits of x and 
y, given the first 2~1 binary digits oft. The first bits of x and 
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Figure 9. Ordering of the four subsquares. 

1 
y come from the first two bits oft according to the order- 
ing of the four subsquares shown in figure 9. Thus 

xbitZD[4] = (0, 0, 0, 1) , 

ybitZD[4] = (0, 1, 1, 0). 

and, for the inverse mapping, 

tbits2D[2][2] = (0, 1, 3, 2). 

The higher order bits are defined recursively, using ro- 
tated versions of this order, as shown at the left of figure 
10. In the squares labeled 1 and 2 in figure 9, the pattern is 

rk.1 
1-1 L---u 

a) Hilbert’s curve. b) My variant. 

Figure 10. Second order approximations 

just a reduced and translated version of the pattern in tig- 
ure 9, but in squares 0 and 4, it is reflected and rotated. 
Apart from the scaling and translation, the basic transfor- 
mation for the pattern is given by one of the following four 
matrices: 

f, we must translate figure 9 by (-.5, -.5) so that the center 
is at the origin, rotate by RZD[tot], and then translate back. 
The product of these three afline transformations can be 
represented by a 3 x 3 integer matrix for homogeneous co- 
ordinates, which is used to transform the vector 
(xbit2D[i2& ybit2D[t&, 1) to get (xt, yt, I). Howeverit is 
more efficient to code, and easier to understand, if the 2 x 
2 matrices given above are used, and the two translations 
are done separately. As show in the code below, the coor- 
dinates are multiplied by two before the first translation, 
and divided by two after the second, to keep all arithmetic 
in integers. 
void t-to-xy(int n, int t, int *x, int*y) ( 

int j,k,rt[21[21, rqC21[21. vaL21. vb[21; 
identity-matrix2DCrt); 
*x = *y = 0; 
for Ck = n-l; k >= 0; ++k) C 

j = 3 & Lt >, (2*k)); 
va[ol = 2*xbit2D[jl - 1; 
valll = 2*vbit2Dlil - 1: 
matrix_times_vecto;2Dirt, va, vb); 
*x += (CvbIOl + 1)/2) << k; 
*y += (Cvbll, + 1),2) << k; 
if (k > 0) ( 

matrix-copyZD(rt, rq); 
if (k == n-l) 

matrix_multiply2D(rq, SZD[j], rt); 
else 

matrix_multiply2D(rq, R2D[jl, rtl) ;I 
1) 

In the next stage we rotate figure IOa) by the matrix 
R[to,], shrink it to half size, and use it each of the four sub- 
squares. Thus the combined rotation R2D[r0~]R2D[f2~] is 
used to determine x2 and y2 from fb5. We continue recw 
sively generating the subsequent digits. The inverse func- 
tion determining f from x and y is defined similarly using 
tbits2D. 

For the film plot described above, I needed a closed 
curve, so I used the variant second approximation shown 
in figure lob). To move the pattern in figure 9 to the four 
subsquares in figure lob), I used the matrices: 

R2D[3] = 9 ,: [ 1 S2D[3]= -I ’ [ I 0 -1 
I assume that for the nth approximation, the coordinates of 
x and y arc given by n bit integers, with the highest order 
bit of x indicated by x0, the next highest by x,, and so on. 
When divided by the implied denominator 2”, these x and 
y coordinates give the position of the lower left corner of 
the corresponding subsquare. Similarly, the 2n bit integer 
for z is divided by 2’” to get the left hand endpoint of the 
corresponding subinterval. Thus the arrays xbit and ybit 
determine xo and yo from the first two bits fol off. To get 
the next highest bits xt and yt from the next two bits fzl of 

To guarantee the continuity of the limit curve, I then 
used the matrices R2D for all subsequent bits ofx and y, so 
that a half-sized copy of figure lOa) appears in each of the 
subsquares of figure lob), oriented by the matrix S2D[tol]. 
Thus the combined rotation to determine x2 and y2 from 
fqg is S2D[fOt] R2D[f2& and the R2D matrices are also 
used in the rest of the recursion. The resulting curve agrees 
with Hilbert’s on the top half of the square, and the bottom 
half is the mirror image of the top half. 



The Hilbert curve. in3D is generated in the same way, 
Using 3D vectors and matrices. The basic pattern shown in 
figure 11 results in 

xbit3D[8] = (O,O, O,O, 1, 1, 1, 1), 

ybit3D[81= (0, 1, 1, 0, 0, 1, 1, 0], 

zbit3D[81=(0,0,1,1,1,1,0,0),and 

tbits[21[2][2] = {O, 3, 1,2,7,4, 6, 5). 

nectcd the center A of the edge separating square (x, y) and 
square (xp, yp) to the center B of the edge separating 
square (x. y) and square (xf, yf), by a 90” circular arc 
whose center C is the corner where these three squares 
meet. If the three squares are in a row, with no common 
corner, I joined A and B by a straight line. The same 
scheme works in 3D; the circular arc joins the centers of 
IWO faces of the cube. 

Figure 11. Order of the eight subcubcs 
The matrices to rotate this pattern into position in each 

of the eight subcubes arc essentially those given in [Liu97] 
but I have incorporated a rcflcction that rcvcrses the order 
of traversal where necessary. This obviates keeping track 
of the traversal order, which makes the algorithm in 
[Liu97] unnecessarily complicated. Thus the 3D rotation 
matrices are: 

0 10 

R3D[O] = i -1 0 0 0 1 01 

100 i 1 0, 0 , R3D[31= 
001 

001 
R3D[l] = ! 0, 0 I , R3D[2] = 

100 

;,;;].RWl= [ii. 

10 0 -11 
R3D[5]= 0 , 0 ,R3D[6]= 0 , 0 ,andR3D[7]= 

[oolj I-10 OJ 

0 -1 0 
i J 
-1 0 0 , and the recursion is similar to the 2D case 

0 01 

As in the 2D case, I needed a set of revised matrices for 
the second order approximation, to product a close curve, 
which agrees with the 3D Hilbert curve of [Liu97] in the 
top half of the cube, and follows its mirror image in the 
bottom half. 

To get the piecewise circular approximation to the 
curve inside the square (x, y) shown in figure 12, I comput- 
ed t from (x, y) and then found the previous square (xp, yp) 
from t-l, and the following square (xf, yfi from r+l. I con- 

(A Y) B (xf, Yn 

l-d--J A C 

(XP, YP) I I 
Figure 12. Construction of a circular arc. 

It was a challenge to deform this arc through a continu- 
ous family of piecewise circular curves into its position in 
the next approximation. I had initially planned to end the 
film by unwinding the 3D Hilbert curve back to a simple 
circle, buy I did not have time to design the ncccssay 3D 
deformation. It was also a challenge to get a smoothly 
varying parametrization of the piecewise circular curves in 
the family, for the purpose of deciding where to switch be- 
tween the different colored bands. The parametrization 
had to be nearly proportional to arc length, but also assign 
the same lengths to the circular arc in figure 12 and the 
straight line in the case that all three squares arc in a row. 

3. Rendering Issues. 
As described in section 1, and shown in the color fig- 

ures 1 through 8, the colored bands move along the curve 
during the animation. Thus, iff is a real number propor- 
tional to the frame count, and s is the real parameter in 
[O,l] along the curve, the color is determined by a periodic 
piecewise constant function C(s -fl of the difference s -J? 
The colors have four components, red, green, blue, and 
opacity a, which is interpreted as the extinction coefficient 
for volume rendering. 

In the limit curves, which till in the whole square or 
cube, the path of the curve is indicated by these moving 
colored bands. They are revealed in the 3D case using 
semi-transparent volume rendering. 

The volume rendering is based on recursive octrce sub- 
division of the level 0 unit cube. The octrec node cube at 
level k is indexed by integers (x, y, z) obtained by multiply- 
ing the coordinates of its front lower left corner by 2k. This 
cube corresponds to an integer f by the inverse mapping 



discussed in section 2, and to the subinterval of length 2-jk 
of the unit interval, starting at s = 2-3kt. If [S -f, s + 2.” -fl 
lies within one of the ranges where the color C is constant, 
or if k = kmax, the maximum level of recursion, the cube 
has a constant color, and can be compositcd onto the im- 
age. If not, it is subdivided into its eight subcubes, they are 
sorted in back to front order according to the position of 
the viewpoint, and the recursive routine is called for each. 

The volume projection uses the SGI hardware pipeline, 
as described in [WMS98]. The projections of the edges of 
a cube divide the image plane into polygons onto which a 
single front cube face and a single rear cube face project. 
The thickness d varies linearly across such a polygon, and 
can be interpolated as a texture coordinate by the texture 
mapping hardware. The second texture coordinate is the 
extinction coefficient <, which in this application is con- 
stant on each cube. The texture map stores a = 1. - exp(- 
dt), which is the polygon opacity needed for correct com- 
positing of a semitransparent volume density. (See 
[WMS97] for details.) 

When I produced the volume rendered Hilbert curve 
with this rendering method, it looked too fuzzy, because 
there were no clearly defined surfaces bounding each vol- 
ume region. Therefore I added semitransparent polygons 
to the front surfaces of a cube, if such surfaces separated 
volumes of different colors. The determination of these 
separating faces, for each cube rendered by the volume re- 
cursion above, also requires recursion. The recursive 
pseudocode below is called for each front-facing face of a 
volume rendered cube C at recursion level k. 
Draw (k, F, C)( 

if(F lies on one of the outside faces of 
the level 0 cube) (render(F); return;> 

find the cube D of the same size as C an 
the opposite side of face F; 

if(Color(D) is homogeneous or k == kmax) 
if(Color(D) != Color(C) 1 render(F); 

else 
subdivide F into four subfaces ~~11, 

bounding four subcubes Cs[lof C; 
for(i = 0; i < 4; ++i) 

Drawlk+l, Fs[i], Cs[il); 
) 

Because all rendering was done by the SGI hardware, 
through OpenGL calls, it only took a few seconds a frame. 
The images were generated at 1270 X 970 pixel resolu- 
tion, and then averaged down to 635 X 485 resolution for 
video recording, providing 2 X 2 supersampled antialias- 
ing. 
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